ergodic.de bewertung und analyse

Robots.txt Information
Robot Path Permission
GoogleBot /
BingBot /
BaiduSpider /
YandexBot /
Meta Tags
Title Operator Theoretic Aspects of Ergodic
Description Operator Theoretic Aspects of Ergodic Theory !!!cancelled today!!! lunchtime seminar // 17 May 2022 Jochen Glück (Wuppertal): Ergodic theory meets partial
Keywords N/A
Server Information
WebSite ergodic faviconergodic.de
Host IP 217.160.0.110
Location Germany
Verwandte Websites
Site Rank
proflogic.com 12,942,809
Mehr zu entdecken
Site
source.bz
drbaddaky.de
lilus-cumulus.com
rowa-ag.ch
nanimanu.ch
amocomosoy.com
place-of-balance.ch
resports-sportswear.com
sunnybase.ch
jfk-csf.ch
baeren-bottighofen.ch
grips.ch
hp-security.ch
meththerapie.ch
rechtsanwaltskanzlei-karlsruhe.com
ergodic.de bewertung
Euro500
Zuletzt aktualisiert: 2022-10-17 14:06:18

ergodic.de hat Semrush globalen Rang von 0. ergodic.de hat einen geschätzten Wert von € 500, basierend auf seinen geschätzten Werbeeinnahmen. ergodic.de empfängt jeden Tag ungefähr 500 einzelne Besucher. Sein Webserver befindet sich in Germany mit der IP-Adresse 217.160.0.110. Laut SiteAdvisor ist ergodic.de sicher zu besuchen.

Verkehr & Wertschätzungen
Kauf-/Verkaufswert Euro€500
Tägliche Werbeeinnahmen Euro€500
Monatlicher Anzeigenumsatz Euro€500
Jährliche Werbeeinnahmen Euro€500
Tägliche eindeutige Besucher 500
Hinweis: Alle Traffic- und Einnahmenwerte sind Schätzungen.
DNS Records
Host Type TTL Data
ergodic.de. A 599 IP: 217.160.0.110
ergodic.de. AAAA 599 IPV6: 2001:8d8:100f:f000::2ef
ergodic.de. NS 86400 NS Record: ns.udag.net.
ergodic.de. NS 86400 NS Record: ns.udag.de.
ergodic.de. NS 86400 NS Record: ns.udag.org.
ergodic.de. MX 3600 MX Record: 10 mx00.udag.de.
ergodic.de. MX 3600 MX Record: 20 mx01.udag.de.
HtmlToTextCheckTime:2022-10-17 14:06:18
Operator Theoretic Aspects of Ergodic Theory !!!cancelled today!!! lunchtime seminar // 17 May 2022 Jochen Glück (Wuppertal): Ergodic theory meets partial differential equations: The Halmos-von Neumann theorem and the shape of a drum The aim of this talk is to present and compare two classical - but quite different, at first glance - topics from the realms of ergodic theory and partial differential equations: The Halmos-von Neumann theorem in ergodic theory says that certain dynamical systems are uniquely determined up to isomorphism by their spectral properties. The - still wide open - problem under which conditions one can "hear the shape of a drum" in PDE theory asks: when does the spectrum of the Laplace operator (say, with Dirichlet boundary conditions) on a bounded domain in R d determine the domain uniquely up to congruence. We discuss that a connection between these two, apparently rather different, topics can be found by using the language of positive operators: both the
HTTP Headers
HTTP/1.1 302 Moved Temporarily
Server: nginx
Date: Thu, 17 Feb 2022 08:32:33 GMT
Content-Type: text/html
Content-Length: 138
Connection: keep-alive
Keep-Alive: timeout=15
Location: https://ergodic.de/
Expires: Thu, 17 Feb 2022 08:52:33 GMT
Cache-Control: max-age=1200

HTTP/2 200 
content-type: text/html; charset=UTF-8
date: Thu, 17 Feb 2022 08:32:33 GMT
server: Apache